El número Mach (M), conocido en el uso coloquial como mach, es una medida de velocidad relativa que se define como el cociente entre la velocidad de un objeto y la velocidad del sonido en el medio en que se mueve dicho objeto.
Es un número adimensional normalmente usado para describir la velocidad de los aviones. Mach 1 equivale a la velocidad del sonido, Mach 2 es dos veces la velocidad del sonido, etc.
Este número fue propuesto por el físico y filósofo austríaco Ernst Mach (1838-1916), uno de los más grandes teóricos de la física de los siglos XIX-XX, como una manera sencilla de expresar la velocidad de un objeto con respecto a la velocidad del sonido.
La utilidad del número de mach reside en que permite expresar la velocidad de un objeto no de forma absoluta en km/h o m/s, sino tomando como referencia la velocidad del sonido, algo interesante desde el momento en que la velocidad del sonido cambia dependiendo de las condiciones de la atmósfera. Por ejemplo, cuanto mayor sea la altura sobre el nivel del mar o menor la temperatura de la atmósfera, menor es la velocidad del sonido. De esta manera, no es necesario saber la velocidad del sonido para saber si un avión que vuela a una velocidad dada la ha superado: basta con saber su número de mach.
Normalmente, las velocidades de vuelo se clasifican según su número de Mach en:
- Subsónico M < 0,7
- Transónico 0,7 < M < 1,2
- Supersónico 1,2 < M < 5
- Hipersónico M > 5
Desde el punto de vista de la mecánica de fluidos, la importancia del número de Mach reside en su relación con la compresibilidad de un gas; cuando este número es menor de 0,3 se considera fluido incompresible en el estudio de aerodinámica y modelos con aire o gases, simplificando notoriamente los cálculos realizados por ordenador.
Generalidades
El Mach se usa comúnmente con objetos moviéndose a alta velocidad en un fluido, y en el estudio de fluidos fluyendo rápidamente dentro de toberas, difusores o túneles de viento. A una temperatura de 15º Celsius, Mach 1 es igual a 340,3 m·s−1 (1.225 km·h−1) en la atmósfera. El número Mach no es una constante ya que depende de la temperatura. Por lo tanto, en la estratosfera no varía notablemente con la altura, incluso cuando la presión del aire cambia con la misma.
Este número es muy utilizado en aeronáutica para comparar el comportamiento de los fluidos alrededor de una aeronave en distintas condiciones. Esto es posible gracias a que el comportamiento de un fluido en el entorno de un objeto es igual siempre que su número de Mach sea el mismo. Por lo tanto, una aeronave viajando a Mach 1 experimentará las mismas ondas de choque, independientemente de que se encuentre al nivel del mar (340,3 m·s−1, 1.225,080 km/h) o a 11.000 metros de altitud (295 m·s−1, 1062 km/h), incluso cuando en el segundo caso su velocidad es un 86,7% de la del primer caso.
La clasificación de los regímenes incluyendo el régimen hipersónico no es caprichosa: para M muy elevados (la frontera técnica depende de la forma del móvil, en general M>5), las ondas de choque son de tal magnitud que el aire se disocia tras ellas, y deja de ser aire, con las propiedades que en este se aceptan, para convertirse en una mezcla de gases disociada, con capas eléctricamente cargadas aunque neutra en su conjunto, que deja de comportarse como lo hacía el aire.
Se demuestra que el número Mach es también el cociente de las fuerzas inerciales (también refiriéndose a las fuerzas aerodinámicas) y las fuerzas elásticas.
velocidad del sonido
La velocidad del sonido es la dinámica de propagación de las ondas sonoras. En la atmósfera terrestre es de 343,2 m/s (a 20 °C de temperatura, con 50 % de humedad y a nivel del mar). La velocidad del sonido varía en función del medio en el que se transmite. Dado que la velocidad del sonido varía según el medio, se utiliza el número Mach 1 para indicarla. Así un cuerpo que se mueve en el aire a Mach 2 avanza a dos veces la velocidad del sonido, independientemente de la presión del aire o su temperatura.
La velocidad o dinámica de propagación de la onda sonora depende de las características del medio en el que se realiza dicha propagación y no de las características de la onda o de la fuerza que la genera. Su propagación en un medio puede servir para estudiar algunas propiedades de dicho medio de transmisión.
La velocidad del sonido varía dependiendo del medio a través del cual viajen las ondas sonoras.
La definición termodinámica de la velocidad del sonido, para cualquier medio, es:
Es decir la derivada parcial de la presión con respecto de la densidad a entropía constante.
La velocidad del sonido varía también ante los cambios de temperatura del medio. Esto se debe a que un aumento de la temperatura se traduce en un aumento de la frecuencia con que se producen las interacciones entre las partículas que transportan la vibración, y este aumento de actividad hace aumentar la velocidad.
Por ejemplo, sobre una superficie nevada el sonido es capaz de desplazarse atravesando grandes distancias. Esto es posible gracias a las refracciones producidas bajo la nieve, que no es un medio uniforme. Cada capa de nieve tiene una temperatura diferente. Las más profundas, donde no llega el sol, están más frías que las superficiales. En estas capas más frías próximas al suelo, el sonido se propaga con menor velocidad.
En general, la velocidad del sonido es mayor en los sólidos que en los líquidos y en los líquidos es mayor que en los gases. Esto se debe al mayor grado de cohesión que tienen los enlaces atómicos o moleculares conforme más sólida es la materia.
- La velocidad del sonido en el aire (a una temperatura de 20 °C) es de 343,2 m/s. Si deseamos obtener la equivalencia en kilómetros por hora podemos determinarla mediante la siguiente conversión física: Velocidad del sonido en el aire en km/h = (343,2 m/1 s) · (3600 s/1 h) · (1 km/1000 m) = 1235,5 km/h.
- En el aire, a 0 °C, el sonido viaja a una velocidad de 331,5 m/s (por cada grado Celsius que sube la temperatura, la velocidad del sonido aumenta en 0,6 m/s).
- En el agua (a 25 °C) es de 1593 m/s.
- En los tejidos es de 1540 m/s.
- En la madera es de 3700 m/s.
- En el hormigón es de 4000 m/s.
- En el acero es de 6100 m/s.
- En el aluminio es de 6400 m/s.
- En el cadmio es de 12400 m/s.
Barrera del sonido
Ir a la navegaciónIr a la búsqueda

Un F/A-18 Hornet rompiendo la barrera del sonido. El disco blanco que se forma es vapor de agua condensándose a consecuencia de la onda de choque. Este fenómeno se conoce como «Singularidad de Prandtl-Glauert«.

Un F-14A Tomcat rompiendo la barrera del sonido.

1. Subsónico.
2. Mach 1.
3. Supersónico.
4. Onda de choque.
Animación 3D representando un avión rompiendo la barrera del sonido.
En aerodinámica, la barrera del sonido fue considerada un límite físico que impedía que objetos de gran tamaño se desplazaran a velocidad supersónica. El término se empezó a utilizar durante la Segunda Guerra Mundial, cuando un cierto número de avionesempezaron a tener problemas de compresibilidad (así como otros problemas no relacionados) al volar a grandes velocidades, y cayó en desuso en los años 1950, cuando los aviones empezaron a romper esa barrera normalmente.
Se define como una «barrera omnipresente» que viaja en todas direcciones a la velocidad típica de 1234,8 km/h, la velocidad del sonido, y al ser vencida por un objeto, estalla formando una explosión sónica que puede ser muy molesta al oído humano. La velocidad del sonido va en función de la temperatura y del tipo de gas y disminuye a medida que baja la temperatura del medio de transmisión. Con el aire a una temperatura de 20 ºC, la velocidad del sonido es la mencionada anteriormente de 1234,8 km/h.
Cuando un avión se acerca a la velocidad del sonido, la forma en que el aire fluye alrededor de su superficie cambia y se convierte en un fluido compresible, dando lugar a una resistencia mayor.
Primeras teorías y experiencias
Inicialmente se pensaba que el aumento de la resistencia seguía un crecimiento exponencial, por lo que un avión no podría superarla aun aumentando de manera sustancial la potencia de los motores. De ahí el nombre de barrera del sonido.
Sin embargo, esta idea ya había sido descartada por los artilleros del siglo XIX. Desde Ernst Mach se sabía que, a partir de cierto punto, la resistencia ya no aumenta más sino que, de hecho, se reduce. De manera que para atravesar la barrera del sonido sería suficiente con disponer de mayor propulsión y mejor aerodinámica para vencer ese punto máximo de resistencia. Con la introducción de nuevas formas de ala que disminuyen la resistencia, y los motores de reacción para la propulsión, fue posible desde los años 1950 viajar más rápido que el sonido con relativa facilidad.
Charles Elwood Yeager fue el primer hombre en atravesar oficialmente la barrera del sonido, el 14 de octubre de 1947, volando con el avión experimental Bell X-1 a velocidad Mach 1 y a una altitud de 45 000 pies,1 aun cuando el piloto alemán Hans Guido Mutke reclame para sí este logro, al señalar haber sido supuestamente el primero en romper la barrera de sonido el 9 de abril de 1945 a bordo de un Messerschmitt Me 262.
Pero esto no fue fácil, para lograr esta hazaña murieron 18 pilotos (oficialmente)[cita requerida].
El 14 de octubre de 2012, el austriaco Felix Baumgartner, se convirtió en el primer hombre en romper la barrera del sonido en caída libre y sin ayuda de maquinaria externa, desde una altura de 39 068 metros y alcanzando una velocidad máxima de 1342 km/h.23
Explosión sónica

Fotografía de un caza F/A-18 Hornet de la Armada de los Estados Unidos en el mismo instante en que atraviesa la barrera del sonido. Nótese la condensación de la nube alrededor del ápice de movimiento causada por la singularidad de Prandtl-Glauert.
La singularidad de Prandtl-Glauert
La singularidad de Prandtl-Glauert es un punto en el que ocurre una caída súbita de la presión del aire y se considera generalmente como la causa de la nube de condensación visible que aparece cuando un avión atraviesa la barrera del sonido (aunque todavía existe controversia sobre su causa). Se trata de un ejemplo de singularidad matemática en aerodinámica.
Si la humedad del aire es suficiente, cuando un objeto alcanza la velocidad del sonido se produce una variación extrema de presión, la cual puede producir la condensación del vapor de agua presente en el aire.
es un punto en el que ocurre una caída súbita de la presión del aire y se considera generalmente como la causa de la nube de condensación visible que aparece cuando un avión atraviesa la barrera del sonido (aunque todavía existe controversia sobre su causa). Se trata de un ejemplo de singularidad matemática en aerodinámica.
Si la humedad del aire es suficiente, cuando un objeto alcanza la velocidad del sonido se produce una variación extrema de presión, la cual puede producir la condensación del vapor de agua presente en el aire.
Se denomina explosión sónica, boom sónico o estampido sónico al componente audible de la onda de choque provocada por un objeto cuando sobrepasa la velocidad Mach 1. Se observa con frecuencia en aviones militares, aunque también lo pueden provocar aviones civiles, como el ya retirado de servicio Concorde, capaz de alcanzar Mach 2,03, o el también retirado Transbordador STS, que llegaba a Mach 25 al inicio de su reentrada en la atmósfera (Mach 1,5 a 18 kilómetros).1 Otro caso en que se puede generar es al penetrar un meteorito en la atmósfera a alta velocidad (54 000 km/h) como el caso del impacto de meteoro en Rusia en el 2013, que causó una gran rotura de cristales con más de 500 heridos.2
El fenómeno se relaciona con el efecto Doppler, el cual describe los cambios en la frecuencia percibida por un observador cuando éste o la fuente emisora de sonido se encuentra en movimiento. Al leer y comprender este efecto en las ondas sonoras, surge la pregunta sobre qué pasará con la frecuencia percibida cuando la velocidad de la fuente se acerque, viaje y sobrepase la velocidad del sonido.
Causas del fenómeno
La explosión sónica sucede porque, al ser la velocidad de la fuente próxima a Mach 1, los frentes de onda que genera comienzan a solaparse el uno contra el otro. Si la velocidad de la fuente supera la velocidad del sonido se producirá una «conificación» de las ondas detrás de ella, y el sonido de la explosión es porque, al ser vencida por la aeronave, la barrera del sonido estalla sin afectar la estructura molecular de la aeronave ni del aire. En el caso del avión caza, el piloto no puede oír esa explosión ni el ruido del motor viajando por el aire, ya que éste es dejado atrás por el avión. La siguiente imagen ilustra las 3 situaciones.

Situaciones según la velocidad de la nave.
Los estampidos sónicos disipan enormes cantidades de energía, lo que produce un ruido muy semejante al de una explosión. Típicamente el frente de choque puede alcanzar los 167 megavatios por metro cuadrado (MW/m²), y puede incluso exceder los 200 decibelios.3
Interpretación matemática[editar]
La frecuencia percibida por un observador en reposo responde a la siguiente ecuación:{\displaystyle f’=f.{\Bigg (}{\frac {1}{1\pm {\frac {v_{s}}{v}}}}{\Bigg )}}
donde {\displaystyle v_{s}} es la velocidad de la fuente y {\displaystyle v} la velocidad del sonido en el aire. Cuando el avión se aproxime a la velocidad del sonido (valores muy próximos), debe interpretarse como un límite.{\displaystyle f’=\lim _{v_{s}\to \ v}f.{\Bigg (}{\frac {1}{1\pm {\frac {v_{s}}{v}}}}{\Bigg )}}
En este momento el valor de f’ tiende a cero pero todavía no lo es. Cuando {\displaystyle v_{s}} sea igual a {\displaystyle v}, el denominador será 0, lo que implica una división por 0, es decir, una inconsistencia o singularidad matemática. Justamente en este punto se producirá la explosión sónica. En símbolos:{\displaystyle Si\ v_{s}=v\ \Rightarrow {\frac {v_{s}}{v}}=1}
La ecuación resultante se la conoce como incompatible, es decir que no tiene solución. Por tanto, cuando la velocidad de la fuente sea mayor que la del sonido, la frecuencia aparente será menor que 0, es decir será una frecuencia negativa. Esta inconsistencia se conoce como Singularidad de Prandtl-Glauert: debido a la formación de la onda de choquese produce un súbito descenso de la presión en la vecindad del ápice motriz, lo que deviene en una igualmente abrupta disminución de la temperatura en toda el área circundante. En condiciones de elevada humedad ambiental el vapor de agua atmosférico se condensa repentinamente en minúsculas gotas de agua, lo que forma una nube de inusuales características.
Este concepto resulta muy confuso, ya que se supone que una frecuencia debe ser un valor mayor o igual a 0, a pesar de que la ecuación tiende a suponer una frecuencia negativa. Esta misma, carece de sentido físico.
Chasquido del látigo

Látigo australiano.
No es necesario subirse a un avión caza para producir una explosión sónica. En un circo, el domador de animales puede utilizar un látigo, cuyo movimiento puede ser más rápido (casi siempre) que la velocidad del sonido.4 Esto también produce un estruendo sónico en miniatura. Las ondas de aire de alta velocidad resultantes producen ese estruendo de sonido o estallido. Si el latigazo se produce sobre una superficie sucia o polvorienta, la onda de choque provocará un levantamiento del polvo que está alrededor del origen de la onda.
Ocurrencia del fenómeno en la vida cotidiana
De una forma parecida al chasquido del látigo, si se toma una toalla y se sacude rápidamente una de sus puntas, podrá producir un mini estruendo sónico, aunque una toalla en reposo no sea un generador natural de sonidos. Es la «explosión» sónica que produce el latigazo de la misma a alta velocidad lo que producirá una onda de choque. La onda de choque se expande alrededor del objeto que lo produce, pero en direcciones contrarias de donde se produjo.
video del dia
Descubre más desde La Red Cientifica
Suscríbete y recibe las últimas entradas en tu correo electrónico.


1 comentario